

Windows

PowerShell Tutorial

for Beginners

2

Table of Contents

Introduction 4

1. PowerShell Scripting Basics 5

1.1 Launching the PowerShell 5

1.2 Preparing to Run PowerShell Scripts 6

1.3 PowerShell Cmdlets 7

1.4 Comments 11

1.5 Pipes 11

2. Top 10 Active Directory Management Tasks with PowerShell 12

2.1 Creating New User and Computer Accounts 12

2.2 Joining a Computer to a Domain and Removing a Computer from a Domain 18

2.3 Renaming a Computer 19

2.4 Resetting a Computer Account 20

2.5 Disabling User and Computer Accounts 20

2.6 Deleting a Computer from Active Directory 21

2.7 Creating and Deleting an Active Directory Group 22

2.8 Adding Users and Computers to a Group 24

2.9 Removing Users and Computers from a Group 25

2.10 Moving Users and Computers to a New Organizational Unit 26

3

3. Top 10 File System Management Tasks Using PowerShell 28

3.1 Viewing Objects in a Directory 28

3.2 Creating Files and Folders 29

3.3 Deleting Files and Folders 29

3.4 Copying Files and Folders 31

3.5 Moving Files and Directories 32

3.6 Renaming Files 33

3.7 Setting File and Folder Permissions 33

3.8 Removing User Permissions 36

3.9 Enabling and Disabling Permissions Inheritance 37

3.10 Changing File and Folder Ownership 38

4. Automating PowerShell Scripts 39

4.1 Creating Scheduled Tasks with PowerShell Scripts 39

4.2 Running PowerShell Scripts with Task Scheduler 40

4

Introduction

Automate it. Now, where’s that script…

Warning: PowerShell is addictive.

Windows PowerShell is an object-oriented automation engine and scripting language with an interactive command-

line shell designed to help IT professionals configure systems and automate administrative tasks. You can find it in every

modern Windows OS starting with Windows 2008R2.

Learning Windows PowerShell is like learning to use a universal multi-tool. In this eBook, we’ll walk you through

PowerShell scripting basics, show you PowerShell commands and scripts for performing the most common administrative

tasks, and explain how you can schedule your PowerShell scripts and commands.

So, let’s start learning PowerShell!

5

1. PowerShell Scripting Basics

In this part, we’ll cover PowerShell scripting basics so you can more easily perform virtually any

administration task in your Windows IT environment.

1.1 Launching the PowerShell

PowerShell offers both a command-line option and an integrated scripting environment (ISE):

To launch the PowerShell command line, type powershell.exe in the Windows Start menu. You’ll see a screen like the

following:

To launch the PowerShell ISE, type powershell_ise.exe in the Start menu. Using the PowerShell ISE is the preferred way

to work with the scripting language because it provides syntax highlighting, auto-filling of commands and other

automation features that simplify script development and testing.

6

1.2 Preparing to Run PowerShell Scripts

PowerShell scripts are stored in.ps1 files. You cannot run a script by simply double-clicking a file; this design helps avoid

accidental harm to your systems. Instead, to execute a script, right-click it and choose Run with PowerShell:

In addition, there is a policy that restricts script execution. You can check this policy by running the

Get-ExecutionPolicy command in PowerShell:

You will get one of the following values:

Restricted — No scripts are allowed. This is the default setting, so you will see it the first time you run the

command.

AllSigned — You can run scripts signed by a trusted developer. Before executing, a script will ask you to

confirm that you want to run it.

RemoteSigned — You can run your own scripts or scripts signed by a trusted developer.

Unrestricted — You can run any script you want.

To start working with PowerShell, you’ll need to change the policy setting from Restricted to RemoteSigned using the Set-

ExecutionPolicy RemoteSigned command:

7

1.3 PowerShell Cmdlets

A cmdlet is a PowerShell command with a predefined function, similar to an operator in a programming language.

Here are some key things to know about cmdlets:

There are system, user and custom cmdlets.

Cmdlets output results as an object or as an array of objects.

Cmdlets can get data for analysis or transfer data to another cmdlet using pipes (I’ll discuss pipes more in

a moment).

Cmdlets are case-insensitive. For example, it doesn’t matter whether you type Get-ADUser, get-aduser

or gEt-AdUsEr.

If you want to use several cmdlets in one string, you must separate them with a semicolon (;).

A cmdlet always consists of a verb (or a word that functions as a verb) and a noun, separated with a hyphen

(the “verb-noun” rule). For example, some of the verbs include:

Get — To get something

Set — To define something

Start — To run something

Stop — To stop something that is running

Out — To output something

New — To create something (“new” is not a verb, of course, but it functions as one)

For practice, try executing the following cmdlets:

Get-Process — Shows the processes currently running on your computer:

8

Get-Service — Shows the list of services with their status

Get-Content — Shows the content of the file you specify (for example, Get-Content

C:\Windows\System32\drivers\etc\hosts)

Good news — you don’t need to memorize all cmdlets. You can list all cmdlets by executing the Get Help

-Category cmdlet, which will return the following:

You can also create your own custom cmdlets.

Each cmdlet has several parameters that customize what it does. The PowerShell ISE will automatically suggest all

valid parameters and their types after you type a cmdlet and a hyphen (-):

9

For example, the following cmdlet shows all services whose names start with “W”:

Get-Service -Name W*

If you forget a cmdlet’s parameters, just use a script like the following, which will display the parameters for the Get-

Process cmdlet:

Get-Process | Get-Member

If you still don’t find the cmdlet you need, you can make sure the help is current and then get examples for a cmdlet (such

as Get-Process) using a script like this:

Update-Help #to update the help data

Get-Help Get-Process -Examples

10

You can also use aliases, which are shortened cmdlet names. For instance, instead of Get-Help you can use just Help. Try
running the following two commands and see whether you get the same result:

Start-Process notepad

start notepad

Similarly, to stop this process, you can use either of the following commands:

Stop-Process -Name notepad

spps -Name notepad

To see all aliases, execute the Get-Alias cmdlet.

11

1.4 Comments

Leaving comments in a script will help you — and your colleagues — better understand what the script does. A string

comment is a single line that starts with a number sign (#); block comments spread across multiple lines, starting and ending

with number signs and angle brackets:

1.5 Pipes

A pipe passes data from one cmdlet to another. I used a pipe earlier to get all properties of an object. For example,

if you execute the following script, you’ll get all services sorted by their status:

Get-Service | Sort-Object -property Status

You can also use a pipe to output text to a file using a script like the following:

"Hello, World!" | Out-File C:\ps\test.txt

You can use multiple pipes. For instance, the following script lists all services, with the first pipe excluding stopped services

and the second pipe limiting the list to display names only:

Get-Service | WHERE {$_.status -eq "Running"} | SELECT displayname

“$_.” defines current element in the pipe

12

2. Top 10 Active Directory Management

Tasks with PowerShell

The easiest way to manage objects in an Active Directory domain is using the Active Directory Users and Computers

(ADUC) MMC snap-in. However, what if you need to create multiple user accounts in bulk, or ADUC is not available

for some reason? In this part, we’ll explore how to perform most common AD management tasks with PowerShell.

Keep in mind that before you can work with Active Directory and its objects, you need to import the Active Directory module

for Windows PowerShell. In Microsoft Windows Server 2008 R2, you need to enable this module by running the following

command:

Import-Module ActiveDirectory

In Microsoft Windows Server 2012 and later, this module is enabled by default.

2.1 Creating New User and Computer Accounts

You can create new user accounts in Active Directory using the cmdlet New-ADUser. You can get its full syntax

by running the following command:

Get-Command New-ADUser –Syntax

When you know the syntax, it’s easy to add users to Active Directory:

New-ADUser B.Johnson

13

Accounts are created with the following default properties:

Account is created in the “Users” container.

Account is disabled.

Account is a member of Domain Users group.

No password is set.

User must reset the password at the first logon.

Therefore, to make a new account that’s actually usable, you need to enable it using the Enable-ADAccount

cmdlet and give it a password using the Set-ADAccountPassword cmdlet.

Let’s create a new account with the following attributes:

Name — Jack Robinson

Given Name — Jack

Surname — Robinson

Account Name — J.Robinson

User Principal Name — J.Robinson@enterprise.com

Path — “OU=Managers,DC=enterprise,DC=com”

Password Input — Required

Status — Enabled

Here’s the script we’ll use:

New-ADUser -Name "Jack Robinson" -GivenName "Jack" -Surname "Robinson" -SamAccountName "J.Robinson"

-UserPrincipalName "J.Robinson@enterprise.com" -Path "OU=Managers,DC=enterprise,DC=com" -

AccountPassword(Read-Host -AsSecureString "Input

Password") -Enabled $true

The Read-Host parameter will ask you to input new password. Note that the password should meet the length,

complexity and history requirements of your domain security policy.

14

Now, let’s create ten similar Active Directory accounts in bulk and set a default password (P@ssw0rd) for each of

them. To send the default password in a protected state, we must use the ConvertTo-SecureString

parameter. Here’s the script to use:

parameter. Here’s the script to use:

$path="OU=IT,DC=enterprise,DC=com"

$username="ITclassuser"

$count=1..10

foreach ($i in $count)

{ New-AdUser -Name $username$i -Path $path -Enabled $True -ChangePasswordAtLogon $true `

-AccountPassword (ConvertTo-SecureString "P@ssw0rd" -AsPlainText -force) -passThru }

To make the script more flexible, add the Read-Host parameter, which will ask for the number of users to be

added:

$path="OU=IT,DC=enterprise,DC=com"

$username=Read-Host "Enter name"

$n=Read-Host "Enter Number"

$count=1..$n

foreach ($i in $count)

{ New-AdUser -Name $username$i -Path $path -Enabled $True -ChangePasswordAtLogon $true `

-AccountPassword (ConvertTo-SecureString "P@ssw0rd" -AsPlainText -force) -passThru }

15

Another option for creating users in AD is to import them from a CSV file. This option is great when you have

a list of users with predefined personal details such as:

FirstName

LastName

Username

Department

Password

OU

The CSV file must be in UTF8 encoding and contain contact data that looks like this:

The following script will create enabled user objects for any users in the CSV that don’t already have accounts in AD. The

“Reset password at the next logon” option will be enabled for the new accounts, so you can use your default password:

16

#Enter a path to your import CSV file

$ADUsers = Import-csv C:\scripts\newusers.csv

foreach ($User in $ADUsers)

{

$Username = $User.username

$Password = $User.password

$Firstname = $User.firstname

$Lastname = $User.lastname

$Department = $User.department

$OU = $User.ou

#Check if the user account already exists in AD

if (Get-ADUser -F {SamAccountName -eq $Username})

{

}

else

{

#If user does exist, output a warning message

Write-Warning "A user account $Username has already exist in Active Directory."

#If a user does not exist then create a new user account

#Account will be created in the OU listed in the $OU variable in the CSV file; don’t forget to change

the domain name in the"-UserPrincipalName" variable

New-ADUser `

-SamAccountName $Username `

-UserPrincipalName "$Username@yourdomain.com" `

-Name "$Firstname $Lastname" `

-GivenName $Firstname `

-Surname $Lastname `

-Enabled $True `

-ChangePasswordAtLogon $True `

-DisplayName "$Lastname, $Firstname" `

-Department $Department `

-Path $OU `

-AccountPassword (convertto-securestring $Password -AsPlainText -Force)

}

}

17

After script execution, we have two new users, Edward Franklin and Bill Jackson, in our Active Directory domain:

To create a computer object, use the New-ADComputer cmdlet. For example, execute the following cmdlet parameters

to create a computer object with “WKS932” as its name and the default LDAP path value:

New-ADComputer –Name “WKS932” –SamAccountName “WKS932”

If you have a list of computers that should be imported into Active Directory, save the list to a CSV file with the heading

“computer” and the list of computer names in the column below it. Run the following PowerShell script on your domain

controller to add computers from the CSV file, making sure you have the Path and File

variables set correctly:

$File="C:\scripts\Computers.csv" # Specify the import CSV position.

$Path="OU=Devices,DC=enterprise,DC=com" # Specify the path to the OU.

Import-Csv -Path $File | ForEach-Object { New-ADComputer -Name $_.Computer

-Path $Path -Enabled $True}

18

2.2 Joining a Computer to a Domain and Removing

a Computer from a Domain

Another common task is joining a computer to a domain controller. To join a PC to an Active Directory

domain, run the following PowerShell script locally:

$dc = "ENTERPRISE" # Specify the domain to join.

$pw = "Password123" | ConvertTo-SecureString -asPlainText –Force # Specify the password for the domain

admin.

$usr = "$dc\T.Simpson" # Specify the domain admin account.

$creds = New-Object System.Management.Automation.PSCredential($usr,$pw)

Add-Computer -DomainName $dc -Credential $creds -restart -force -verbose # Note that the computer

will be restarted automatically.

The computer will restart and then join the domain; it will be added to the default container.

To join a computer to a DC remotely, you need to enhance this script this way:

$dc = "ENTERPRISE"

$pw = "Password123" | ConvertTo-SecureString -asPlainText -Force

$usr = "$dc\T.Simpson"

$pc = "R07GF" # Specify the computer that should be joined to the domain.

$creds = New-Object System.Management.Automation.PSCredential($usr,$pw)

Add-Computer -ComputerName $pc -LocalCredential $pc\admin -DomainName $dc -Credential

$creds -Verbose -Restart -Force

The $pc variable and –LocalCredential parameter are used to authenticate the computer to the domain. Note that in

order to use this method, you must disable the firewall on the local computer.

You can add more than one computer to the domain by either specifying them in the command line as a comma-delimited

list or importing their names from a text file.

Here’s how to specify the computers in a comma-delimited list:

$dc = "ENTERPRISE"

$pw = "Password123" | ConvertTo-SecureString -asPlainText -Force

$usr = "$dc\T.Simpson"

$pc = "WKS034, WKS052, WKS057" # Specify the computers that should be joined to the domain.

$creds = New-Object System.Management.Automation.PSCredential(usrpw)

Add-Computer -ComputerName $pc -LocalCredential $pc\admin -DomainName $dc -Credential

$creds -Restart -Force

19

And here’s how to use a text file with the list of computers that should be joined:

$dc = "ENTERPRISE"

$pw = "Password123" | ConvertTo-SecureString -asPlainText -Force

$usr = "$dc\T.Simpson"

$pc = Get-Content -Path C:\Computers.txt # Specify the path to the computers list.

$creds = New-Object System.Management.Automation.PSCredential($usr,$pw)

Add-Computer -ComputerName $pc -LocalCredential $pc\admin -DomainName $dc -Credential

$creds -Restart -Force

To remove a computer from a domain remotely, use the Remove-Computer cmdlet. Here, we’re removing a computer

from a domain, so no local credentials are needed and we can skip the –LocalCredential parameter:

$dc = "ENTERPRISE"

$pw = "Password123" | ConvertTo-SecureString -asPlainText -Force

$usr = "$dc\T.Simpson"

$pc = "R07GF"

$creds = New-Object System.Management.Automation.PSCredential($usr,$pw) Remove-

Computer -ComputerName $pc -Credential $creds –Verbose –Restart –Force

To remove multiple computers using a list in a TXT file, use the script above for joining computers to a DC, replacing the

Add-Computer cmdlet with Remove-Computer. Note that you will still need domain admin credentials to complete

this unjoin operation.

2.3 Renaming a Computer

To change a computer name, use the Rename-Computer cmdlet. Note that the computer must be online and connected

to Active Directory.

Rename-Computer –ComputerName "FS1" -NewName "FS2"

If you want to run this script locally, it will look like this:

Rename-Computer -NewName "newname" -DomainCredential "Domain\Administrator"

20

You can improve the renaming script by joining the computer to the domain and putting it into the specified

OU simultaneously. The script should be run on the target machine, not on the domain controller.

$NewComputerName = "Server3" # Specify the new computer name.

$DC = "contoso.com" # Specify the domain to join.

$Path = "OU=TestOU,DC=contoso,DC=com" # Specify the path to the OU where to put the computer

account in the domain.

Add-Computer -DomainName $DC -OUPath $Path -NewName $NewComputerName –Restart

–Force

The script will prompt for the credentials of an account that has permissions to join computers to the

domain, and then the computer will be renamed, restarted and joined to the domain.

2.4 Resetting a Computer Account

Like a user account, a computer account interacts with Active Directory using a password. But for computer accounts, a

password change is initiated every 30 days by default and the password is exempted from the domain’s password policy.

Password changes are driven by the client (computer), not AD.

Computer credentials usually unknown to the user because they are randomly set by the computer. But you can set your

own password; here is a PowerShell script for doing so:

$pc = read-host –Prompt “Input computer name to reset“ # Specify the computer name.

$pw = read-host –Prompt “Input random characters for temp password“ –AsSecureString # Specify the

password.

Get-ADComputer $pc | Set-ADAccountPassword –NewPassword:$pw -Reset:$true

2.5 Disabling User and Computer Accounts

To disable user, computer or service accounts, use the Disable-ADAccount cmdlet. The -Identity parameter specifies

which account to disable. You can specify an account by its distinguished name, security identifier

(SIDs), globally unique identifier (GUID) or Security Account Manager (SAM) account name.

Disable-AdAccount -Identity RussellS

21

If you specify a computer account name, remember to append a dollar sign ($) at the end of the name;

otherwise, you’ll get an error after script execution.

Disable-ADAccount -Identity fs1$

You can also disable accounts in bulk using a list in a text file:

$Pclist = Get-Content C:\scripts\Computer.txt # Specify the path to the computer list.

Foreach($pc in $Pclist)

{

Disable-ADAccount -Identity "$pc"

Get-ADComputer -Identity "$pc" | Move-ADObject -TargetPath “OU=Disabled

Computers,DC=enterprise,DC=com”

}

2.6 Deleting a Computer from Active Directory

To delete a computer account from AD, use the Remove-ADObject cmdlet:

Remove-ADObject -Identity "WKS932"

You will be prompted to confirm the deletion.

If you have a text file with a list of old computers, you can streamline the task of removing them using PowerShell.

The following script will read the computer names from a TXT file and delete the corresponding accounts via a pipeline:

Get-Content C:\scripts\computersfordeletion.txt | % { Get-ADComputer -Filter { Name

-eq $_ } } | Remove-ADObject -Recursive

22

Stale accounts in Active Directory can be compromised, leading to security incidents, so it is critical to keep an eye on

them. This PowerShell script will query Active Directory and return all computers that have not

been logged in to for the past 30 days. It also will remove those accounts to keep your AD clean.

$stale = (Get-Date).AddDays(-30) # means 30 days since last logon; can be changed to any number. Get-

ADComputer -Property Name,lastLogonDate -Filter {lastLogonDate -lt $stale} |

FT Name,lastLogonDate

Get-ADComputer -Property Name,lastLogonDate -Filter {lastLogonDate -lt $stale} | Remove-

ADComputer

There is one computer, FS1, that has been not been logged on to for more than 30 days. The system will prompt for

confirmation before deleting it from the domain:

If you want to disable, rather than delete, the inactive computer accounts, replace the

Remove-ADComputer cmdlet with Set-ADComputer and -Enabled $false parameter and value.

Remember that it is critical to closely track all changes to computer accounts, so you can quickly spot any

unwanted modifications and respond appropriately. Here’s how to monitor computer account deletions.

2.7 Creating and Deleting an Active Directory Group

In Active Directory, access to network resources is granted to security principals, such as user accounts and computer

accounts, and those permissions can change over time. To simplify access management and improve security, medium

and large companies often use Active Directory security groups, which can contain user and computer accounts as

well as other groups. They also often use distribution groups to manage email distribution lists. Both security and

distribution groups have unique SIDs and GUIDs.

https://www.netwrix.com/how_to_detect_who_deleted_a_computer_account.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial

23

If you’re not already familiar with AD groups and group management, please read the Active Directory

Group Management Best Practice guide.

To create an AD group, use the New-ADGroup cmdlet. You can get its syntax by running the following command:

Get-Command New-ADGroup –Syntax

The easiest way to create a group is to run this short script:

New-ADGroup "Group Name"

The system will ask you to specify the GroupScope parameter and then it will create a new group. However, this group

will have default values, such as:

It will be created in the default LDAP container called “Users”.

It will have the “Security” group type.

The Members, Member of, Description, Email and Notes fields will all be blank.

Let’s create a security group called “Quality” in the “Production” OU (-Path); it should be a security group

(-GroupCategory) and it should be global (-GroupScope):

New-ADGroup "Quality" -Path "OU=Production,DC=enterprise,dc=com" -GroupCategory

Security -GroupScope Global -PassThru –Verbose

If you want to make a universal distribution group, simply change the –GroupCategory parameter to “Distribution” and

the –GroupScope parameter to “Universal”. You can also change the LDAP path by changing the –Path parameter.

To delete an AD group, use the Remove-ADGroup cmdlet. The easiest script for that will look like this:

Remove-ADGroup -Identity Quality

You’ll be prompted to confirm the deletion of the group.

https://www.netwrix.com/active_directory_group_management.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial

24

2.8 Adding Users and Computers to a Group

You can add users to an AD group with the Add-AdGroupMember cmdlet. For instance, if you needed to add two users,

B.Jackson and E.Franklin, to the “Quality” group, here is what the script would look like:

Add-AdGroupMember -Identity Quality -Members B.Jackson, E.Franklin

Once you’ve added users to a security group, you can run this script to verify that they are listed as members:

Get-ADGroupMember -Identity Quality

If you need to add users to another security or distribution group, such as Domain Admins, specify “Domain Admins” as the

value for the –Identity parameter. If you need one group to be a member of another, specify the group name as the value

for the –Members parameter. The same principle applies to computer accounts, but you’ll need to append a dollar sign ($)

to the end of the computer account name. For example, to add the

computer “WKS043” to a group, specify “WKS043$” as the value for the –Member parameter:

Add-AdGroupMember -Identity Quality -Members WKS043$

To add a user to multiple groups at once, run the following script.

"Managers","Quality" | Add-ADGroupMember -Members `

(Read-Host -Prompt "Enter User Name")

You’ll be prompted to input the username.

If you want to add a large number of users to a group, you can specify them in a CSV file and then import that file. Note that

the list of the usernames in the CSV file must contain the SamAccountNames in the “users” column, as shown below:

25

To add users to group from a CSV file, run the following PowerShell script:

Import-CSV C:\scripts\users.csv -Header users | ForEach-Object {Add-AdGroupMember

-Identity "Quality" -members $_.users}

If you want to copy all members from one group to another group, run the following script:

Get-ADGroupMember “Quality” | Get-ADUser | ForEach-Object {Add-ADGroupMember

-Identity “QualityControl” -Members $_}

2.9 Removing Users and Computers from a Group

To remove a user from a group, use the Remove-ADGroupMember cmdlet:

Remove-ADGroupMember -Identity Quality -Members J.Robinson

To remove a computer account from a group, specify the computer name with a dollar sign ($) at the end as the value for

the -Members parameter.

An easy way to remove multiple users from an AD group is to create a CSV file with the list of usernames and then remove

those users from the group object using this script:

Import-CSV C:\scripts\users.csv -Header users | ForEach-Object {Remove-ADGroupMember

-Identity "Quality" -members $_.users}

To remove a user from all groups, run this script:

Get-ADUser -Identity E.Franklin -Properties MemberOf | ForEach-Object {

$_.MemberOf | Remove-ADGroupMember -Members $_.DistinguishedName -Confirm:$false

}

26

Note that the user will lose all group membership except Domain Users, which can be removed manually if

needed.

Don’t forget to enable the Active Directory Recycle Bin feature so you can easily roll back your changes if

something goes wrong.

2.10 Moving Users and Computers to a New Organizational Unit

The PowerShell Move-ADObject cmdlet moves any object or set of objects (such as a user, a computer, a group or an OU)

to a specified OU. The -Identity parameter specifies which Active Directory object or container to move. Note that

you need to enter the full LDAP path or SID of the object; you cannot use its SamAccountName. Here’s how to move the

user “John Brown” to the “Districts” OU:

Move-ADObject -Identity "CN=John Brown,CN=Users,DC=enterprise,DC=com" -TargetPath

"OU=Districts,OU=IT,DC=Enterprise,DC=Com"

Use the same syntax to move computer objects. The following command will move the computer “R07GF” to the

“Computers” container:

Move-ADObject -Identity "CN=R07GF,OU=CEO,DC=enterprise,DC=com" -TargetPath

"CN=Computers,DC=Enterprise,DC=Com"

If you have a predefined list of objects to move, you can save it as a CSV file and then import that file to Active

Directory. The CSV list should be in the following format:

https://www.netwrix.com/how_to_restore_active_directory_users.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial

27

Use this PowerShell script to move AD user accounts listed in a CSV file:

Specify target OU. This is where users will be moved.

$TargetOU = "OU=Districts,OU=IT,DC=enterprise,DC=com"

Specify CSV path. Import CSV file and assign it to a variable.

$Imported_csv = Import-Csv -Path "C:\temp\MoveList.csv"

$Imported_csv | ForEach-Object {

Retrieve DN of user.

$UserDN = (Get-ADUser -Identity $_.Name).distinguishedName

Move user to target OU.

Move-ADObject -Identity $UserDN -TargetPath $TargetOU

}

To move AD computer accounts listed in a text file, use the following PowerShell script:

Specify path to the text file with the computer account names.

$computers = Get-Content C:\Temp\Computers.txt

Specify the path to the OU where computers will be moved.

$TargetOU = "OU=Districts,OU=IT,DC=enterprise,DC=com"

ForEach($computer in $computers){

Get-ADComputer $computer |

Move-ADObject -TargetPath $TargetOU

}

28

3. Top 10 File System Management Tasks

Using PowerShell

Every day, system administrators have to perform a range of standard operations on the numerous files and folders on their

Windows servers, from managing user data on shared resources to maintaining backups properly. Using the following

information, you can automate many of these tasks and save time for more important projects.

In this part, we explain how to automate file management and NTFS permissions management tasks with the help of

PowerShell scripts.

3.1 Viewing Objects in a Directory

To view the content of a directory on a Windows file server, use the Get-ChildItem cmdlet. To show all hidden
files, add the -Force parameter. The command below shows all root objects in the Shared folder:

Get-ChildItem -Force \\fs\Shared

If you want to also check all subfolders and their content, add the -Recurse parameter:

Get-ChildItem -Force \\fs\Shared -Recurse

To filter the output, add the Filter, Exclude, Include and Path parameters to the Get-ChildItem cmdlet. For advanced

object filtering, use the Where-Object cmdlet. The script below searches for all executable files in the IT folder that were

modified after April 1, 2018:

Get-ChildItem -Path \\fs\Shared\IT -Recurse -Include *.exe | Where-Object -FilterScript

{($_.LastWriteTime -gt '2018-04-01')}

29

3.2 Creating Files and Folders

To create new objects with Windows PowerShell, you can use the New-Item cmdlet and specify the type of item you want

to create, such as a directory, file or registry key. For example, this command creates a folder:

New-Item -Path '\\fs\Shared\NewFolder' -ItemType Directory

And this command creates an empty file:

New-Item -Path '\\fs\Shared\NewFolder\newfile.txt' -ItemType File

If you need to create a file and write data to it, there are at least two built-in methods. The first is to use the

Out-File cmdlet:

$text = 'Hello World!' | Out-File $text -FilePath C:\data\text.txt

To overwrite an existing file, use the –Force switch parameter.

Alternatively, you can create files using the Export-Csv cmdlet, which exports the output to a csv file that can be opened

in Excel:

Get-ADuser -Filter * | Export-Csv -Path C:\data\ADusers.csv

3.3 Deleting Files and Folders

To delete objects, use the Remove-Item cmdlet. If the object is not empty, you’ll be prompted to confirm the deletion.

Here’s how to delete the “IT” folder and all the subfolders and files inside it:

Remove-Item -Path '\\fs\shared\it\'

Confirm

The item at \\pdc\shared\it has children and the Recurse parameter was not specified. If you continue, all

children will be removed with the item. Are you sure you want to continue?

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is "Y"):

30

If you have already made sure that every object inside the folder should be deleted, you can use the

-Recurse switch to skip the confirmation step:

Remove-Item -Path '\\fs\shared\it\' -Recurse

Sometimes you need to clean up old files from a certain directory. Here’s the way to accomplish that:

$Folder = "C:\Backups"

#delete files older than 30 days

Get-ChildItem $Folder -Recurse -Force -ea 0 |

? {!$_.PsIsContainer -and $_.LastWriteTime -lt (Get-Date).AddDays(-30)} |

ForEach-Object {

$_ | del -Force

$_.FullName | Out-File C:\log\deletedbackups.txt -Append

}

#delete empty folders and subfolders if any exist

Get-ChildItem $Folder -Recurse -Force -ea 0 |

? {$_.PsIsContainer -eq $True} |

? {$_.getfiles().count -eq 0} |

ForEach-Object {

$_ | del -Force

$_.FullName | Out-File C:\log\deletedbackups.txt -Append

}

31

Here’s how to check whether a file exists and delete it if it does:

$FileName = 'C:\data\log.txt' If

(Test-Path $FileName){

Remove-Item $FileName

}

To delete files from remote PCs, you must have the appropriate security permissions to access them. Be sure to

use UNC paths so the script will correctly resolve the file locations.

$filelist = @(" \c$\Temp", "\c$\Backups") #variable to delete files and folder

$computerlist = Get-Content C:\data\pc.txt #get list of remote pc's foreach

($computer in $computerlist){

foreach ($file in $filelist){

$filepath= Join-Path "\\$computer\" "$filelist" #generate unc paths to files or folders if (Test-

Path $filepath)

{

Remove-Item $filepath -force -recurse -ErrorAction Continue}}}

3.4 Copying Files and Folders

The Copy-Item cmdlet enables you to copy objects from one path to another. The following command creates a

backup by copying the file users.xlsx from one remote computer (fs) and saving it to another (fs2)

over the network:

Copy-Item -Path \\fs\Shared\it\users.xlsx -Destination \\fs2\Backups\it\users.xlsx

If the target file already exists, the copy attempt will fail. To overwrite the existing file, even if it is in

Read-Only mode, use the -Force parameter:

Copy-Item -Path \\fs\Shared\it\users.xlsx -Destination \\fs2\Backups\it\users.xlsx -Force

If you’re copying files to or from remote computers, be sure to use UNC paths. For example, use this command

to copy files from a remote file server to the local C: directory:

Copy-Item \\fs\c$\temp -Recurse C:\data\

32

To copy files from your local directory to the remote folder, simply reverse the source and destination

locations:

Copy-Item C:\data\ -Recurse \\fs\c$\temp

You can also copy files from one remote server to another. The following script recursively copies the

\\fs\Shared\temp folder to \\fs\Shared\test:

Copy-Item \\fs\Shared\temp -Recurse \\fs\Shared\test

To copy only certain files from the source content to the destination, use the -Filter parameter. For instance, the

following command copies only txt files from one folder to another:

Copy-Item -Filter *.txt -Path \\fs\Shared\it -Recurse -Destination \\fs2\Shared\text

You can also run the XCOPY and ROBOCOPY commands to copy files, or use COM objects as in the example below:

(New-Object -ComObject Scripting.FileSystemObject).CopyFile('\\fs\Shared', 'fs2\Backup')

3.5 Moving Files and Directories

The Move-Item cmdlet moves an item, including its properties, contents, and child items, from one location to another. It

can also move a file or subdirectory from one directory to another location.

The following command moves a specific backup file from one location to another:

Move-Item -Path \\fs\Shared\Backups\1.bak -Destination \\fs2\Backups\archive\1.bak

This script moves the entire Backups folder and its content to another location:

Move-Item -Path \\fs\Shared\Backups -Destination \\fs2\Backups\archive

The Backups directory and all its files and subfolders will then appear in the archive directory.

33

3.6 Renaming Files

The Rename-Item cmdlet enables you to change the name of an object while leaving its content intact. It’s not possible

to move items with the Rename-Item command; for that functionality, you should use the Move-Item cmdlet as

described above.

The following command renames a file:

Rename-Item -Path "\\fs\Shared\temp.txt" -NewName "new_temp.txt"

To rename multiple files at once, use a script like this:

$files = Get-ChildItem -Path C:\Temp #create list of files

foreach ($file in $files)

{

$newFileName=$file.Name.Replace("A","B") #replace "A" with "B"

Rename-Item $file $newFileName

}

3.7 Setting File and Folder Permissions

In order to implement a least-privilege model, which is a best practice for system security, IT security specialists

and system administrators configure NTFS access control lists (ACLs) by adding access control entries (ACEs) on NTFS

file servers. There are both basic and advanced NTFS permissions. You can set each of the permissions to “Allow” or

“Deny”. You can find all these user permissions by running the following

PowerShell script:

[system.enum]::getnames([System.Security.AccessControl.FileSystemRights])

If you’re not familiar with NTFS permissions management, check out this NTFS Permissions

Management Best Practice guide.

The PowerShell set-acl cmdlet is used to change the security descriptor of a specified item, such as a file, folder or a registry

key; in other words, it is used to modify file or folder permissions. The following script sets the “FullControl” permission to

“Allow” for the user “ENTERPRISE\T.Simpson” to the folder “Sales”:

https://www.netwrix.com/ntfs_permissions_management.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial

34

$acl = Get-Acl \\fs1\shared\sales

$AccessRule = New-Object

System.Security.AccessControl.FileSystemAccessRule("ENTERPRISE\T.Simpson","FullControl","Allow")

$acl.SetAccessRule($AccessRule)

$acl | Set-Acl \\fs1\shared\sales

Note that the SetAccessRule parameter completely overwrites the permissions for a user or group, so you can change

folder permissions using this parameter. If you just want to add permissions, use the AddAccessRule

parameter instead. For instance, the following script adds the “FullControl” permission for the “ENTERPRISE\J.Carter” user

account to the “Accounting” folder:

$acl = Get-Acl \\fs1\shared\Accounting

$AccessRule = New-Object

System.Security.AccessControl.FileSystemAccessRule("ENTERPRISE\J.Carter","FullControl","Allow")

$acl.AddAccessRule($AccessRule)

$acl | Set-Acl \\fs1\shared\Accounting

Here are the other permissions you can assign to users or security groups:

Access Right

Full Control

Traverse Folder / Execute File

List Folder / Read Data

Read Attributes

Read Extended Attributes Create

Files / Write Data Create Folders /

Append Data Write Attributes

Write Extended Attributes

Delete Subfolders and Files

Delete

Read Permissions

Change Permissions

Take Ownership

Access Right’s Name in PowerShell

FullControl

ExecuteFile

ReadData

ReadAttributes

ReadExtendedAttributes

CreateFiles AppendData

WriteAttributes

WriteExtendedAttributes

DeleteSubdirectoriesAndFiles

Delete

ReadPermissions

ChangePermissions

TakeOwnership

35

There are also sets of basic access rights that can be applied:

Access Rights Set

Read

Write

Read and Execute

Modify

Rights Included in the Set

List Folder / Read Data

Read Attributes

Read Extended Attributes

Read Permissions

Create Files / Write Data Create

Folders / Append Data Write

Attributes

Write Extended Attributes

Traverse folder / Execute File List

Folder / Read Data

Read Attributes

Read Extended Attributes

Read Permissions

Traverse folder / Execute File

List Folder / Read Data

Read Attributes

Read Extended Attributes Create

Files / Write Data Create Folders /

Append Data Write Attributes

Write Extended Attributes

Delete

Read Permissions

Name of the Set in PowerShell

Read Write

ReadAndExecute

Modify

36

To copy permissions, a user must own both the source and target folders. The following command will copy

the permissions from the “Accounting” folder to the “Sales” folder:

get-acl \\fs1\shared\accounting | Set-Acl \\fs1\shared\sales

If you want to get a list of NTFS permissions via PowerShell, you can follow this easy how-to about

exporting NTFS permissions to CSV.

3.8 Removing User Permissions

To remove permissions, use the RemoveAccessRule parameter. Let’s delete the “Allow FullControl”

permission for T.Simpson to the “Sales” folder:

$acl = Get-Acl \\fs1\shared\sales

$AccessRule = New-Object

System.Security.AccessControl.FileSystemAccessRule("ENTERPRISE\T.Simpson","FullControl","Allow")

$acl.RemoveAccessRule($AccessRule)

$acl | Set-Acl \\fs1\shared\sales

Note that RemoveAccessRule deletes only specific permissions. To completely wipe T.Simpson’s permissions

to the “Sales” folder, use the PurgeAccessRules command:

$acl = Get-Acl \\fs1\shared\sales

$usersid = New-Object System.Security.Principal.Ntaccount ("ENTERPRISE\T.Simpson")

$acl.PurgeAccessRules($usersid)

$acl | Set-Acl \\fs1\shared\sales

Note that PurgeAccessRules doesn’t work with a string user name; it works only with SIDs. Therefore, we used the

“Ntaccount” class to convert the user account name from a string into a SID. Also note that PurgeAccessRules

works only with explicit permissions; it does not purge inherited ones.

https://www.netwrix.com/how_to_export_folder_permissions.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial

37

3.9 Enabling and Disabling Permissions Inheritance

NTFS permissions can be either explicit or inherited. Explicit permissions are permissions that are configured

individually, while inherited permissions are inherited from the parent folder. The hierarchy for

permissions is as follows:

Explicit Deny

Explicit Allow

Inherited Deny

Inherited Allow

To manage inheritance, we use the SetAccessRuleProtection method. It has two parameters:

The first parameter is responsible for blocking inheritance from the parent folder. It has two states:

“$true” and “$false”.

The second parameter determines whether the current inherited permissions are retained or removed.

It has the same two states: “$true” and “$false”.

Let’s disable inheritance for the “Sales” folder and delete all inherited permissions as well:

$acl = Get-Acl \\fs1\shared\sales

$acl.SetAccessRuleProtection($true,$false)

$acl | Set-Acl \\fs1\shared\sales

All inherited permissions were removed; only access permissions added explicitly are left.

Let’s revert this change and re-enable inheritance for the “Sales” folder:

$acl = Get-Acl \\fs1\shared\sales

$acl.SetAccessRuleProtection($false,$true)

$acl | Set-Acl \\fs1\shared\sales

38

3.10 Changing File and Folder Ownership

If you want to set an owner for a folder, you need to run the SetOwner method. Let’s make

“ENTERPRISE\J.Carter” the owner of the “Sales” folder:

$acl = Get-Acl \\fs1\shared\sales

$object = New-Object System.Security.Principal.Ntaccount("ENTERPRISE\J.Carter")

$acl.SetOwner($object)

$acl | Set-Acl \\fs1\shared\sales

Notice that we again used the Ntaccount class to convert the user account name from a string into a SID.

Note that the SetOwner method does not enable you to change the owner to any account you want; the account must

have the “Take Ownership”, “Read” and “Change Permissions” rights.

39

4. Automating PowerShell Scripts

Now let’s explore you how to create scheduled tasks using PowerShell scripts and Microsoft Windows Task

Scheduler.

4.1 Creating Scheduled Tasks with PowerShell Scripts

Suppose that each day at 10 AM, we want to execute a PowerShell script that monitors changes to group membership in an

Active Directory site.

In Windows Powershell 2.0 (Windows 7 or Windows Server 2008 R2), to create a scheduled job, you must use the Task

Scheduler module. Install the module by running the Import-Module TaskScheduler command, and then use the

following script to create a task that will execute the PowerShell script named “GroupMembershipChanges.ps1”

daily at 10 AM:

Import-Module TaskScheduler $task = New-Task

$task.Settings.Hidden = $true

Add-TaskAction -Task $task -Path C:\Windows\system32\WindowsPowerShell\v1.0\powershell.exe

–Arguments “-File C:\Scripts\GroupMembershipChanges.ps1” Add-

TaskTrigger -Task $task -Daily -At “10:00”

Register-ScheduledJob –Name ”Monitor Group Management” -Task $task

Windows PowerShell 3.0 and 4.0 (Windows Server 2012 R2 and above) don’t include the Task Scheduler module,

so this script will not work. Instead, PowerShell 3.0 and 4.0 include new cmdlets for creating scheduled tasks,

New-ScheduledTaskTrigger and Register-ScheduledTask, which make creating a scheduled task much easier

and more convenient. So let’s create a task that will execute our script daily at

10 AM using the system account (SYSTEM), which has elevated privileges:

$Trigger= New-ScheduledTaskTrigger -At 10:00am –Daily # Specify the trigger settings

$User= "NT AUTHORITY\SYSTEM" # Specify the account to run the script

$Action= New-ScheduledTaskAction -Execute "PowerShell.exe" -Argument "C:\PS\StartupScript.ps1"

Specify what program to run and its parameters

Register-ScheduledTask -TaskName "MonitorGroupMembership" -Trigger $Trigger -User $User

-Action $Action -RunLevel Highest –Force # Specify the name of the task

40

Other trigger options that could be useful in creating new tasks include:

-AtStartup — Triggers the task at Windows startup.

-AtLogon — Triggers the task when the user signs in.

-Once — Triggers the task once. You can set a repetition interval using the –RepetitionInterval parameter.

-Weekly — Triggers the task once a week.

Note that, it is not possible to trigger execution “on an event” using these cmdlets; PowerShell scripts with

“on an event” triggers are much more complicated. However, it is possible to do so with the Task Scheduler tool, so this is

a real disadvantage of using PowerShell rather than Task Scheduler.

4.2 Running PowerShell Scripts with Task Scheduler

Task Scheduler can help you automatically launch a program or PowerShell script at a certain time or when certain conditions

are met. You can also schedule sending emails and even displaying certain messages.

To create a task, open Task Scheduler by pressing “Windows+R” and typing taskschd.msc in the window that opens. Then

take the following steps:

1. Click Create a task and enter a name and description for the new task. To run the program with administrator

privileges, check the Run with the highest privileges box. In our example, we’ll assign a service account to run

the task and run it regardless of whether the user is logged on.

41

2. Switch to the Triggers tab and click the New… button. Here you can specify the conditions that trigger the task to be

executed. For example, you can have it executed on schedule, at logon, on idle, at startup or whenever a particular

event occurs. We want our task to be triggered by any new software installation, so we choose On an event from the drop-

down menu and select Application from the Log drop-down. Leave the Source parameter blank and enter “11707” for

the EventID. Click OK to save your changes.

42

3. Navigate to the Actions tab and click New…. Here you can specify the actions that will be executed whenever

the trigger conditions are met. For instance, you can send an email or display a message. In our case, we want to start a

program. You can find the script here; it will send an alert with the event details about the installed software.

To schedule the PowerShell script, specify the following parameters:

Action — Start a program

Program\script — powershell

Add arguments (optional) — -File [Specify the file path to the script here]

Click OK to save your changes.

https://www.netwrix.com/how_to_detect_software_installations.html?utm_source=content&utm_medium=ebook&utm_campaign=powershell-tutorial

43

4. The Conditions tab enables you to specify the conditions that, along with the trigger, determine whether the task

should be run. In our case, we should leave the default settings on this tab.

5. You can also set up additional parameters for your scheduled task on the Settings tab. For our example, though, we’ll

leave them unchanged.

44

6. When the task is completely set up, the system will ask you for the service account password. Note that this account must

have the “Log on as Batch Job” right. Enter the password and click OK to save the task.

7. For Task Scheduler to function properly, the Job Scheduler service must be set to start automatically. Run Services.msc.

In the list of services, find Task Scheduler and double-click it. On the General tab, set the startup type to “Automatic”

and click OK to save your change.

Now whenever new software is installed on your Microsoft Windows Server, you will be notified via an email that details

the time of the installation, the name of the software and the user ID (SID) of the person who installed it.

To modify an existing task, right-click it in the list, select Properties, edit the required settings and click OK. To delete a

scheduled task, right-click it, select Delete and confirm the action.

 911 982608

+31 858 887 804

+46 8 525 03487

+41 43 508 3472

+33 9 75 18 11 19

+49 711 899 89 187

+852 5808 1306

+39 02 947 53539

netwrix.com/social

